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Preface

The second edition of Calculus supports a three-semester or four-quarter calculus sequence 
typically taken by students studying mathematics, engineering, the natural sciences, or 
economics. The second edition has the same goals as the first edition:

•	to motivate the essential ideas of calculus with a lively narrative, demonstrating the util-
ity of calculus with applications in diverse fields;

•	to introduce new topics through concrete examples, applications, and analogies, appeal-
ing to students’ intuition and geometric instincts to make calculus natural and believ-
able; and 

•	once this intuitive foundation is established, to present generalizations and abstractions 
and to treat theoretical matters in a rigorous way.

The second edition both builds on the success and addresses the inevitable deficien-
cies of the first edition. We have listened to and learned from the instructors who used the 
first edition. They have given us wise guidance about how to make the second edition an 
even more effective learning tool for students and a more powerful resource for instruc-
tors. Users of the book continue to tell us that it mirrors the course they teach—and more 
importantly, that students actually read it! Of course, the second edition also benefits from 
our own experiences using the book, as well as our experiences teaching mathematics at 
diverse institutions over the past 30 years.

We are grateful to users of the first edition—for their courage in adopting a first edi-
tion book, for their enthusiastic response to the book, and for their invaluable advice and 
feedback. They deserve much of the credit for the improvements that we have made in the 
second edition.

New in the Second Edition
Narrative
The second edition of this book has undergone a thorough cover-to-cover polishing of the 
narrative, making the presentation of material even more concise and lucid. Occasionally, 
we discovered new ways to present material to make the exposition clearer for students 
and more efficient for instructors.

Figures
The figures—already dynamic and informative in the first edition—were thoroughly re-
viewed and revised when necessary. The figures enrich the overall spirit of the book and 
tell as much of the calculus story as the words do. The path-breaking interactive figures 
in the companion eBook have been refined, and they still represent a revolutionary way 
to communicate mathematics. See page xiv, eBook with Interactive Figures, for more 
information.
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Exercises
The comprehensive 7656 exercises in the first edition were thoroughly reviewed and 
refined. Then 19% more basic skills and mid-level exercises were added. The exercises at 
the end of each section are still efficiently organized in the following categories.

•	Review Questions begin each exercise set and check students’ conceptual understanding 
of the essential ideas from the section. 

•	Basic Skills exercises are confidence-building problems that provide a solid foundation 
for the more challenging exercises to follow. Each example in the narrative is linked di-
rectly to a block of Basic Skills exercises via Related Exercises references at the end of 
the example solution. 

•	Further Explorations exercises expand on the Basic Skills exercises by challenging stu-
dents to think creatively and to generalize newly acquired skills. 

•	Applications exercises connect skills developed in previous exercises to applications and 
modeling problems that demonstrate the power and utility of calculus. 

•	Additional Exercises are generally the most difficult and challenging problems; they in-
clude proofs of results cited in the narrative. 

Each chapter concludes with a comprehensive set of Review Exercises.

Answers
The answers in the back of the book have been reviewed and thoroughly checked for accuracy. 
The reliability that we achieved in the first edition has been maintained—if not improved.

New Topics
We have added new material on Newton’s method, surface area of solids of revolution, 
hyperbolic functions, and TNB frames. Based on our own teaching experience, we also 
added a brief new introductory section to the chapter on Techniques of Integration. We felt 
it makes sense to introduce students to some general integration strategies before diving into 
the standard techniques of integration by parts, partial fractions, and various substitutions.

MyMathLab
We (together with the team at Pearson) have made many improvements to the MyMathLab 
course for the second edition. Hundreds of new algorithmic exercises that correspond to 
those in the text were added to the course. Cumulative review exercises have been added, 
providing an opportunity for students to get “mixed practice” with important skills such as 
finding derivatives. New step-by-step exercises for key skills provide support for students 
in their first attempts at new and important problems. Real-world exercises now require 
that students provide units with their answer. We’ve added more exercises that call for 
student manipulation and analysis of the Interactive Figures. We have greatly increased 
the number of instructional videos. The graphing functionality in MyMathLab has become 
more sophisticated and the answer-checking algorithms are more refined.

Differential Equations
This book has a single robust section devoted to an overview of differential equations. 
However, for schools that require more expansive coverage of differential equations, we 
provide complete online chapters on both first- and second-order differential equations, 
available in MyMathLab as well as through the Pearson Math and Stats Resource page at 
www.pearsonhighered.com/mathstatsresources.

Pedagogical Features 
Figures
Given the power of graphics software and the ease with which many students assimilate 
visual images, we devoted considerable time and deliberation to the figures in this book. 
Whenever possible, we let the figures communicate essential ideas using annotations 

www.pearsonhighered.com/mathstatsresources
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reminiscent of an instructor’s voice at the board. Readers will quickly find that the figures 
facilitate learning in new ways.  

Quick Check and Margin Notes
The narrative is interspersed with Quick Check questions that encourage students to read 
with pencil in hand. These questions resemble the kinds of questions instructors pose in 
class. Answers to the Quick Check questions are found at the end of the section in which 
they occur. Margin Notes offer reminders, provide insight, and clarify technical points. 

Guided Projects
The Instructor’s Resource Guide and Test Bank contains 78 Guided Projects. These proj-
ects allow students to work in a directed, step-by-step fashion, with various objectives: to 
carry out extended calculations, to derive physical models, to explore related theoretical 
topics, or to investigate new applications of calculus. The Guided Projects vividly dem-
onstrate the breadth of calculus and provide a wealth of mathematical excursions that go 
beyond the typical classroom experience. A list of suggested Guided Projects is included 
at the end of each chapter. Students may access the Guided Projects within MyMathLab.

Technology
We believe that a calculus text should help students strengthen their analytical skills and 
demonstrate how technology can extend (not replace) those skills. Calculators and graph-
ing utilities are additional tools in the kit, and students must learn when and when not to 
use them. Our goal is to accommodate the different policies about technology that various 
instructors may use.

Throughout the book, exercises marked with T  indicate that the use of technology— rang-
ing from plotting a function with a graphing calculator to carrying out a calculation using a com-
puter algebra system—may be needed. See page xvi for information regarding our technology 
resource manuals covering Maple, Mathematica and Texas Instruments graphing calculators.

eBook with Interactive Figures
The textbook is supported by a groundbreaking and award-winning electronic book, created 
by Eric Schulz of Walla Walla Community College. This “live book” contains the complete 
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text of the print book plus interactive versions of approximately 700 figures. Instructors can 
use these interactive figures in the classroom to illustrate the important ideas of calculus, and 
students can explore them while they are reading the textbook. Our experience confirms that 
the interactive figures help build students’ geometric intuition of calculus. The authors have 
written Interactive Figure Exercises that can be assigned via MyMathLab so that students 
can engage with the figures outside of class in a directed way. Additionally, the authors have 
created short videos, accessed through the eBook, that tell the story of key Interactive Fig-
ures. Available only within MyMathLab, the eBook provides instructors with powerful new 
teaching tools that expand and enrich the learning experience for students. 

Content Highlights
In writing this text, we identified content in the calculus curriculum that consistently pres-
ents challenges to our students. We made organizational changes to the standard presenta-
tion of these topics or slowed the pace of the narrative to facilitate students’ comprehension 
of material that is traditionally difficult. Two noteworthy modifications to the traditional 
table of contents for this course appear in the material for Calculus II and Calculus III.

Often appearing near the end of the term, the topics of sequences and series are the 
most challenging in Calculus II. By splitting this material into two chapters, we have given 
these topics a more deliberate pace and made them more accessible without adding sig-
nificantly to the length of the narrative. 

There is a clear and logical path through multivariate calculus, which is not apparent 
in many textbooks. We have carefully separated functions of several variables from vector-
valued functions, so that these ideas are distinct in the minds of students. The book culminates 
when these two threads are joined in the last chapter, which is devoted to vector calculus. 

Additional Resources
Instructor’s Resource Guide and Test Bank
ISBN 0-321-95487-4 | 978-0-321-95487-9
Bernard Gillett, University of Colorado at Boulder

This guide represents significant contributions by the textbook authors and contains a vari-
ety of classroom support materials for instructors. 

•	Seventy-eight Guided Projects, correlated to specific chapters of the text, can be as-
signed to students for individual or group work. The Guided Projects vividly demon-
strate the breadth of calculus and provide a wealth of mathematical excursions that go 
beyond the typical classroom experience. 

•	Lecture Support Notes give an Overview of the material to be taught in each section of 
the text, and helpful classroom Teaching Tips. Connections among various sections of 
the text are also pointed out, and Additional Activities are provided. 

•	Quick Quizzes for each section in the text consist of multiple-choice questions that can 
be used as in-class quiz material or as Active Learning Questions. These Quick Quizzes 
can also be found at the end of each section in the interactive eBook.

•	Chapter Reviews provide a list of key concepts from each chapter, followed by a set of 
chapter review questions. 

•	Chapter Test Banks consist of between 25 and 30 questions that can be used for in-class 
exams, take-home exams, or additional review material. 

•	Learning Objectives Lists and an Index of Applications are tools to help instructors gear 
the text to their course goals and students’ interests. 

•	Student Study Cards, consisting of key concepts for both single-variable and multivari-
able calculus, are included for instructors to photocopy and distribute to their students as 
convenient study tools. 

•	Answers are provided for all exercises in the manual, including the Guided Projects. 
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Instructor’s Solutions Manuals
Mark Woodard, Furman University
Single Variable Calculus (Chapters 1–11) ISBN 0-321-95485-8 | 978-0-321-95485-5
Multivariable Calculus (Chapters 9–15) ISBN 0-321-95430-0 | 978-0-321-95430-5

The Instructor’s Solutions Manual contains complete solutions to all the exercises in the text. 

Student’s Solutions Manuals
Mark Woodard, Furman University
Single Variable Calculus (Chapters 1–11) ISBN 0-321-95495-5 | 978-0-321-95495-4
Multivariable Calculus (Chapters 9–15) ISBN 0-321-95431-9 | 978-0-321-95431-2

The Student’s Solutions Manual is designed for the student and contains complete solu-
tions to all the odd-numbered exercises in the text. 

Just-in-Time Algebra and Trigonometry for Calculus, Fourth Edition
ISBN 0-321-67104-X | 978-0-321-67104-2
Guntram Mueller and Ronald I. Brent, University of Massachusetts—Lowell 

Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time 
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Chapter Preview  Mathematics is a language with an alphabet, a vocabulary, and 
many rules. Before beginning your calculus journey, you should be familiar with the ele-
ments of this language. Among these elements are algebra skills; the notation and termi-
nology for various sets of real numbers; and the descriptions of lines, circles, and other 
basic sets in the coordinate plane. A review of this material is found in Appendix A. This 
chapter begins with the fundamental concept of a function and then presents some of the 
functions needed for calculus: polynomials, rational functions, algebraic functions, and 
the trigonometric functions. (Logarithmic, exponential, and inverse functions are intro-
duced in Chapter 7.) Before you begin studying calculus, it is important that you master 
the ideas in this chapter.

1.1  Review of Functions
Everywhere around us we see relationships among quantities, or variables. For example, 
the consumer price index changes in time and the temperature of the ocean varies with 
latitude. These relationships can often be expressed by mathematical objects called func-
tions. Calculus is the study of functions, and because we use functions to describe the 
world around us, calculus is a universal language for human inquiry.

Functions

1.1	 Review of Functions

1.2	 Representing Functions

1.3	 Trigonometric Functions  

Definition  Function

A function f  is a rule that assigns to each value x in a set D a unique value denoted 
f  1x2. The set D is the domain of the function. The range is the set of all values of 
f  1x2 produced as x varies over the entire domain (Figure 1.1).

Function fInput x Output f (x)

Domain Range

a b f (a) � f (b)

x f (x)

f

f

f

Figure 1.1

1
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EXAMPLE 1  Identifying functions  State whether each graph in Figure 1.3 represents 
a function.

O

T
em

pe
ra

tu
re

Time

Two y values for one value
of x fails test—not a function

Two times for one temperature
—a function

O

y

x

(a) (b)

Figure 1.2

Vertical Line Test

A graph represents a function if and only if it passes the vertical line test: Every 
vertical line intersects the graph at most once. A graph that fails this test does not 
represent a function. 

➤	 A set of points or a graph that does not 
correspond to a function represents 
a relation between the variables. All 
functions are relations, but not all 
relations are functions. 

y

x

y

x

y

x

y

x

(a) (b) (c) (d)

Figure 1.3

Solution  The vertical line test indicates that only graphs (a) and (c) represent func-
tions. In graphs (b) and (d), there are vertical lines that intersect the graph more than 
once. Equivalently, there are values of x that correspond to more than one value of y.  
Therefore, graphs (b) and (d) do not pass the vertical line test and do not represent  
functions.	 Related Exercises 11–12 

EXAMPLE 2  Domain and range  Graph each function with a graphing utility using the 
given window. Then state the domain and range of the function.

a.	 y = f  1x2 = x2 + 1; 3-3, 34 * 3-1, 54
b.	 z = g1t2 = 24 - t2; 3-3, 34 * 3-1, 34
c.	 w = h1u2 =

1

u - 1
; 3-3, 54 * 3-4, 44

➤	 A window of 3a, b4 * 3c, d4 means 
a … x … b and c … y … d. 

➤	 If the domain is not specified, we take it 
to be the set of all values of x for which 
f  is defined. We will see shortly that the 
domain and range of a function may be 
restricted by the context of the problem. 

The independent variable is the variable associated with the domain; the dependent 
variable belongs to the range. The graph of a function f  is the set of all points 1x, y2 
in the xy-plane that satisfies the equation y = f  1x2. The argument of a function is the 
expression on which the function works. For example, x is the argument when we write 
f  1x2. Similarly, 2 is the argument in f  122 and x2 + 4 is the argument in f  1x2 + 42.

Quick Check 1  If f  1x2 = x2 - 2x, find f  1-12, f  1x22, f  1t2, and f  1p - 12. 

The requirement that a function assigns a unique value of the dependent variable to 
each value in the domain is expressed in the vertical line test (Figure 1.2a). For example, the 
outside temperature as it varies over the course of a day is a function of time (Figure 1.2b).
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Solution

a.	 Figure 1.4 shows the graph of f  1x2 = x2 + 1. Because f  is defined for all values of x,  
its domain is the set of all real numbers, written 1- ∞ , ∞2 or ℝ. Because x2 Ú 0 for 
all x, it follows that x2 + 1 Ú 1 and the range of f  is 31, ∞2.

b.	 When n is even, functions involving nth roots are defined provided the quantity un-
der the root is nonnegative (additional restrictions may also apply). In this case, the 
function g is defined provided 4 - t2 Ú 0, which means t2 … 4, or -2 … t … 2. 
Therefore, the domain of g is 3-2, 24. By the definition of the square root, the range 
consists only of nonnegative numbers. When t = 0, z reaches its maximum value of 
g102 = 14 = 2, and when t = {2, z attains its minimum value of g1{22 = 0. 
Therefore, the range of g is 30, 24 (Figure 1.5).

c.	 The function h is undefined at u = 1, so its domain is 5u: u ≠ 16, and the graph 
does not have a point corresponding to u = 1. We see that w takes on all values ex-
cept 0; therefore, the range is 5w: w ≠ 06. A graphing utility does not represent this 
function accurately if it shows the vertical line u = 1 as part of the graph (Figure 1.6).

Related Exercises 13–20 

➤

EXAMPLE 3  Domain and range in context  At time t = 0, a stone is thrown verti-
cally upward from the ground at a speed of 30 m>s. Its height above the ground in meters 
(neglecting air resistance) is approximated by the function h = f  1t2 = 30t - 5t2, where 
t is measured in seconds. Find the domain and range of f  in the context of this particular 
problem.

Solution  Although f  is defined for all values of t, the only relevant times are 
between the time the stone is thrown 1t = 02 and the time it strikes the ground, when 
h = f  1t2 = 0. Solving the equation h = 30t - 5t2 = 0, we find that

 30t - 5t2 = 0

 5t16 - t2 = 0   Factor.

 5t = 0 or 6 - t = 0  Set each factor equal to 0.

 t = 0 or t = 6.   Solve.

Therefore, the stone leaves the ground at t = 0 and returns to the ground at t = 6. An 
appropriate domain that fits the context of this problem is 5t: 0 … t … 66. The range 
consists of all values of h = 30t - 5t2 as t varies over 30, 64. The largest value of h oc-
curs when the stone reaches its highest point at t = 3 (halfway through its flight), which 
is h = f  132 = 45. Therefore, the range is 30, 454. These observations are confirmed by 
the graph of the height function (Figure 1.7). Note that this graph is not the trajectory of 
the stone; the stone moves vertically.
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➤	 The dashed vertical line u = 1 in 
Figure 1.6 indicates that the graph 
of w = h1u2 approaches a vertical 
asymptote as u approaches 1 and that w 
becomes large in magnitude for u near 1. 

Related Exercises 21–24 

➤

Quick Check 2  State the domain and range of f  1x2 = 1x2 + 12-1. 

Composite Functions
Functions may be combined using sums 1 f + g2, differences 1 f - g2, products 1 fg2, or 
quotients 1 f>g2. The process called composition also produces new functions.

Figure 1.7
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EXAMPLE 4  Composite functions and notation  Let f  1x2 = 3x2 - x and 
g1x2 = 1>x. Simplify the following expressions.

a.	 f  15p + 12	 b.  g11>x2	 c.  f  1g1x22	 d.  g1 f  1x22
Solution  In each case, the functions work on their arguments.

a.	 The argument of f  is 5p + 1, so

f  15p + 12 = 315p + 122 - 15p + 12 = 75p2 + 25p + 2.

b.	 Because g requires taking the reciprocal of the argument, we take the reciprocal of 1>x 
and find that g11>x2 = 1>11>x2 = x.

c.	 The argument of f  is g1x2, so

f  1g1x22 = f a 1
x
b = 3a 1

x
b

2

- a 1
x
b =

3

x2 -
1
x

=
3 - x

x2 .

d.	 The argument of g is f  1x2, so

g1 f  1x22 = g13x2 - x2 =
1

3x2 - x
.

Related Exercises 25–36 

EXAMPLE 5  Working with composite functions  Identify possible choices for the 
inner and outer functions in the following composite functions. Give the domain of the 
composite function.

a.	 h1x2 = 29x - x2    b.  h1x2 =
2

1x2 - 123

Solution

a.	 An obvious outer function is f  1x2 = 1x, which works on the inner function 
g1x2 = 9x - x2. Therefore, h can be expressed as h = f ∘ g or h1x2 = f  1g1x22. The 
domain of f ∘ g consists of all values of x such that 9x - x2 Ú 0. Solving this inequal-
ity gives 5x: 0 … x … 96 as the domain of f ∘ g.

Range of g Range of f � gDomain of g Domain of f

x1

x2

g(x2) is outside domain
of f, so x2 is not in
domain of f � g.

g(x1) is in domain
of f, so x1 is in
domain of f � g.

g f

f (g(x1))

x
Function

g
u � g(x)

Function
f

y � f (u) � f (g(x))

(a)

(b)

Figure 1.8

➤	 You have now seen three different 
notations for intervals on the real number 
line, all of which will be used throughout 
the book:
•	 3-2, 32 is an example of interval 

notation,
•	 -2 … x 6 3 is inequality notation, 

and
•	 5x: -2 … x 6 36 is set notation. 

➤	 Examples 4c and 4d demonstrate that, in 
general,

f  1g1x22 ≠ g1 f  1x22.

➤	 Techniques for solving inequalities are 
discussed in Appendix A. 

Definition  Composite Functions

Given two functions f  and g, the composite function f ∘ g is defined by 
1 f ∘ g21x2 = f  1g1x22. It is evaluated in two steps: y = f  1u2, where u = g1x2. 
The domain of f ∘ g consists of all x in the domain of g such that u = g1x2 is in the 
domain of f  (Figure 1.8).

➤	 In the composition y = f  1g1x22,  f  is the 
outer function and g is the inner function. 



	 1.1  Review of Functions	  5

b.	 A good choice for an outer function is f  1x2 = 2>x3 = 2x -3, which works on 
the inner function g1x2 = x2 - 1. Therefore, h can be expressed as h = f ∘ g 
or h1x2 = f  1g1x22. The domain of f ∘ g consists of all values of g1x2 such that 
g1x2 ≠ 0, which is 5x: x ≠ {16.

Related Exercises 37–40 

EXAMPLE 6  More composite functions  Given f  1x2 = 1 3 x and g1x2 = x2 - x - 6, 
find (a) g ∘ f  and (b) g ∘ g, and their domains.

Solution

a.	 We have

1g ∘ f 21x2 = g1 f  1x22 = g11 3 x2 = 11 3 x22 - 1 3 x - 6 = x2>3 - x1>3 - 6.

	 f  1x2	 f  1x2
Because the domains of f  and g are 1- ∞ , ∞2, the domain of f ∘ g is also 1- ∞ , ∞2.

b.	 In this case, we have the composition of two polynomials:

 1g ∘ g21x2 = g1g1x22
 = g1x2 - x - 62
 = 1x2 - x - 622 - 1x2 - x - 62 - 6

	 g1x2	 g1x2
 = x4 - 2x3 - 12x2 + 13x + 36.

The domain of the composition of two polynomials is 1- ∞ , ∞2.
Related Exercises 41–54 

Quick Check 3  If f  1x2 = x2 + 1 and g1x2 = x2, find f ∘ g and g ∘ f. 

EXAMPLE 7  Using graphs to evaluate composite functions  Use the graphs of f  and 
g in Figure 1.9 to find the following values.

a.	 f  1g1322    b.  g1  f  1322    c.  f  1  f  1422    d.  f  1g1  f  18222
Solution

a.	 The graphs indicate that g132 = 4 and f  142 = 8, so f  1g1322 = f  142 = 8.

b.	 We see that g1 f  1322 = g152 = 1. Observe that f  1g1322 ≠ g1  f  1322.

c.	 In this case, f  1 f  1422 = f  182 = 6.

	 8

d.	 Starting on the inside,

f  1g1  f  18222 = f  1g1622 = f  112 = 6.

	 6	 1

Related Exercises 55–56 

EXAMPLE 8  Using a table to evaluate composite functions  Use the function values 
in the table to evaluate the following composite functions.

a.	 1  f ∘ g2102    b.  g1f1-122    c.  f  1g1g1-1222

9

8

7

6

5

4

3

2

1

9876543210

y

x

y � f (x)

y � g(x)

Figure 1.9

()*

()* ()*

x -2 -1 0 1 2

f  1x 2 0 1 3 4 2

g 1x 2 -1 0 -2 -3 -4

ee

t t
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Secant Lines and the Difference Quotient
As you will see shortly, slopes of lines and curves play a fundamental role in 
calculus. Figure 1.10 shows two points P1x, f  1x22 and Q1x + h, f  1x + h22 on 
the graph of y = f  1x2 in the case that h 7 0. A line through any two points on a 
curve is called a secant line; its importance in the study of calculus is explained in 
Chapters 2 and 3. For now, we focus on the slope of the secant line through P and Q, 
which is denoted msec and is given by

msec =
change in y

change in x
=

f  1x + h2 - f  1x2
1x + h2 - x

=
f  1x + h2 - f  1x2

h
.

The slope formula 
f  1x + h2 - f  1x2

h
 is also known as a difference quotient, and it can 

be expressed in several ways depending on how the coordinates of P and Q are 
labeled. For example, given the coordinates P1a, f  1a22 and Q1x, f  1x22 (Figure 1.11),  
the difference quotient is

msec =
f  1x2 - f  1a2

x - a
.

We interpret the slope of the secant line in this form as the average rate of change of f 
over the interval 3a, x4.

EXAMPLE 9  Working with difference quotients

a.	 Simplify the difference quotient 
f  1x + h2 - f  1x2

h
, for f  1x2 = 3x2 - x.

b.	 Simplify the difference quotient 
f  1x2 - f  1a2

x - a
, for f  1x2 = x3.

Solution

a.	 First note that f  1x + h2 = 31x + h22 - 1x + h2. We substitute this expression into 
the difference quotient and simplify:

x

y

O

f (x)

f (x � h)

x x � h

y � f (x)

P

Q

f (x � h) � f (x)

h

f (x � h) � f (x)
h

msec �

For h � 0

Figure 1.10

x

y

O

f (a)

f (x)

a x

y � f (x)

P

Q

f (x) � f (a)

x � a

f (x) � f (a)
x � a

msec �

For x � a

Figure 1.11

➤	 Treat f  1x + h2 like the composition 
f  1g1x22, where x + h plays the role of 
g1x2. It may help to establish a pattern in 
your mind before evaluating f  1x + h2. 
For instance, using the function in 
Example 9a, we have

 f  1x2 = 3x2 - x;

 f  1122 = 3 # 122 - 12;

 f  1b2 = 3b2 - b;

 f  1math2 = 3 # math2 - math;

therefore,

f  1x + h2 = 31x + h22 - 1x + h2. 

 
f  1x + h2 - f  1x2

h
=

31x + h22 - 1x + h2 - 13x2 - x2
h

 =
31x2 + 2xh + h22 - 1x + h2 - 13x2 - x2

h
  Expand 1x + h22.

 =
3x2 + 6xh + 3h2 - x - h - 3x2 + x

h
  Distribute.

 =
6xh + 3h2 - h

h
  Simplify.

 =
h16x + 3h - 12

h
= 6x + 3h - 1.   Factor and simplify.

	 f  1x + h2	 f  1x2
$++++1+%+++++&	 $++11%++1&

Solution

a.	 Using the table, we see that g102 = -2 and f  1-22 = 0. Therefore, 1  f ∘ g2102 = 0.

b.	 Because f  1-12 = 1 and g112 = -3, it follows that g1f  1-122 = -3.

c.	 Starting with the inner function,

f  1g1g1-1222 = f  1g1022 = f  1-22 = 0.

	 0	 -2

Related Exercises 55–56 

(1)1* ()*
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b.	 The factoring formula for the difference of perfect cubes is needed:

 
f  1x2 - f  1a2

x - a
=

x3 - a3

x - a

 =
1x - a21x2 + ax + a22

x - a
  Factoring formula

 = x2 + ax + a2.   Simplify.
Related Exercises 57–66 

EXAMPLE 10  Interpreting the slope of the secant line  Sound intensity I, measured 
in watts per square meter 1W>m22, at a point r meters from a sound source with acoustic 

power P is given by I1r2 =
P

4pr2.

a.	 Find the sound intensity at two points r1 = 10 m and r2 = 15 m from a sound source 
with power P = 100 W. Then find the slope of the secant line through the points 
110, I11022 and 115, I11522 on the graph of the intensity function and interpret the 
result.

b.	 Find the slope of the secant line through any two points 1r1, I1r122 and 1r2, I1r222 on 
the graph of the intensity function with acoustic power P.

Solution

a.	 The sound intensity 10 m from the source is I1102 =
100 W

4p110 m22 =
1

4p
 W>m2. At 

15 m, the intensity is I1152 =
100 W

4p115 m22 =
1

9p
 W>m2. To find the slope of the 

secant line (Figure 1.12), we compute the change in intensity divided by the change in 
distance:

msec =
I1152 - I1102

15 - 10
=

1

9p
-

1

4p

5
= -

1

36p
≈ -0.0088 W>m2 per meter.

The units provide a clue to the physical meaning of the slope: It measures the average 
rate at which the intensity changes as one moves from 10 m to 15 m away from the 
sound source. In this case, because the slope of the secant line is negative, the intensity 
decreases (slowly) at an average rate of 1>136p2 W>m2 per meter.

b.	

 msec =
I1r22 - I1r12

r2 - r1
=

P

4pr2
 2 -

P

4pr1
 2

r2 - r1
	 Evaluate I1r22 and I1r12.

 =

P

4p
¢ 1

r2
 2 -

1

r1
 2 ≤

r2 - r1
	 Factor.

 =
P

4p
 a r1

 2 - r2
 2

r1
 2r2

 2 b  
1

r2 - r1
	 Simplify.

 =
P

4p
# 1r1 - r221r1 + r22

r1
 2r2

 2
# 1

- 1r1 - r22	 Factor.

 = -
P1r1 + r22
4pr1

 2r2
 2 	 Cancel and simplify.

This result is the average rate at which the sound intensity changes over an interval 
3r1, r24. Because r1 7 0 and r2 7 0, we see that msec is always negative. Therefore, the 
sound intensity I1r2 decreases as r increases, for r 7 0.

Related Exercises 67–70 

➤	 Some useful factoring formulas:

1.	 Difference of perfect squares:

x2 - y2 = 1x - y21x + y2.

2.	 Sum of perfect squares: x2 + y2 
does not factor over the real 
numbers.

3.	 Difference of perfect cubes:

x3 - y3 = 1x - y21x2 + xy + y22.

4.	 Sum of perfect cubes:

x3 + y3 = 1x + y21x2 - xy + y22.

 

0.15

0.10

0.05

I

r1510

(10,     )1

msec � �      W/m2 per meter

4�
(15,     )1

9�

1
36�

Figure 1.12
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Symmetry
The word symmetry has many meanings in mathematics. Here we consider symmetries of 
graphs and the relations they represent. Taking advantage of symmetry often saves time 
and leads to insights.

Definition  Symmetry in Graphs

A graph is symmetric with respect to the y-axis if whenever the point 1x, y2 is on 
the graph, the point 1-x, y2 is also on the graph. This property means that the graph is 
unchanged when reflected across the y-axis (Figure 1.13a).

A graph is symmetric with respect to the x-axis if whenever the point 1x, y2 
is on the graph, the point 1x, -y2 is also on the graph. This property means that the 
graph is unchanged when reflected across the x-axis (Figure 1.13b).

A graph is symmetric with respect to the origin if whenever the point 1x, y2 is 
on the graph, the point 1-x, -y2 is also on the graph (Figure 1.13c). Symmetry about 
both the x- and y-axes implies symmetry about the origin, but not vice versa. 

O

y

OO

x

x

(a)

y

(c)(b)

(x, �y)

(x, y)

(x, y)

(�x, y)

(x, y)

(�x, �y)

y

x

Symmetry
about origin

Symmetry
about y-axis

Symmetry
about x-axis

Figure 1.13

Definition  Symmetry in Functions

An even function f  has the property that f  1-x2 = f  1x2, for all x in the domain. The 
graph of an even function is symmetric about the y-axis.

An odd function f  has the property that f  1-x2 = - f  1x2, for all x in the domain. 
The graph of an odd function is symmetric about the origin.

Polynomials consisting of only even powers of the variable (of the form x2n, where n 
is a nonnegative integer) are even functions. Polynomials consisting of only odd powers 
of the variable (of the form x2n + 1, where n is a nonnegative integer) are odd functions.

Quick Check 4  Explain why the graph of a nonzero function is never symmetric with re-
spect to the x-axis. 

EXAMPLE 11  Identifying symmetry in functions  Identify the symmetry, if any, in 
the following functions.

a.	 f  1x2 = x4 - 2x2 - 20      b.  g1x2 = x3 - 3x + 1      c.  h1x2 =
1

x3 - x

Solution

a.	 The function f  consists of only even powers of x (where 20 = 20 # 1 = 20x0 and x0 is 
considered an even power). Therefore, f  is an even function (Figure 1.14). This fact is 
verified by showing that f  1-x2 = f  1x2:

f  1-x2 = 1-x24 - 21-x22 - 20 = x4 - 2x2 - 20 = f  1x2.

20

10

�30

�10

�4 �3 �1 4321

y

x

(�2, �12) (2, �12)

Even function: If (x, y) is on the
graph, then (�x, y) is on the graph.

y � x4 � 2x2 � 20

Figure 1.14
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b.	 The function g consists of two odd powers and one even power (again, 1 = x0 is an 
even power). Therefore, we expect that g has no symmetry about the y-axis or the ori-
gin (Figure 1.15). Note that

g1-x2 = 1-x23 - 31-x2 + 1 = -x3 + 3x + 1,

	 so g1-x2 equals neither g1x2 nor -g1x2; therefore, g has no symmetry.

c.	 In this case, h is a composition of an odd function f  1x2 = 1>x with an odd function 
g1x2 = x3 - x. Note that

h1-x2 =
1

1-x23 - 1-x2 = -
1

x3 - x
= -h1x2.

Because h1-x2 = -h1x2, h is an odd function (Figure 1.16).

20

10

�20

�10

�4 �3 �1 4321

y

x

No symmetry: neither an
even nor odd function.

y � x3 � 3x � 1

Figure 1.15

➤	 The symmetry of compositions of even 
and odd functions is considered in 
Exercises 95–101. 

1

1

y

x

y �
1

x3 � x

(1.5, 0.53)

(�0.5, 2.67)

(�1.5, �0.53)

(0.5, �2.67)

Odd function: If (x, y) is on the
graph, then (�x, �y) is on the graph.

Figure 1.16
Related Exercises 71–80 

Section 1.1 Exercises
Review Questions

1.	 Use the terms domain, range, independent variable, and depen-
dent variable to explain how a function relates one variable to 
another variable.

2.	 Is the independent variable of a function associated with the 
domain or range? Is the dependent variable associated with the 
domain or range?

3.	 Explain how the vertical line test is used to detect functions.

4.	 If f  1x2 = 1>1x3 + 12, what is f  122? What is f  1y22?

5.	 Which statement about a function is true? (i) For each value of 
x in the domain, there corresponds one unique value of y in the 
range; (ii) for each value of y in the range, there corresponds one 
unique value of x in the domain. Explain.

6.	 If f  1x2 = 1x and g1x2 = x3 - 2, find the compositions 
f ∘ g, g ∘ f ,  f ∘ f , and g ∘ g.

7.	 Suppose f  and g are even functions with f 122 = 2 and 
g122 = -2. Evaluate f  1g1222 and g1 f   1-222.

8.	 Explain how to find the domain of f ∘ g if you know the domain 
and range of f  and g.

9.	 Sketch a graph of an even function f and state how f  1x2 and 
f  1-x2 are related.

10.	 Sketch a graph of an odd function f and state how f  1x2 and f  1-x2 
are related.

Basic Skills
11–12. Vertical line test Decide whether graphs A, B, or both 
represent functions.

11.	 y

xO

A

B




